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ABSTRACT 
Understanding the intricacy of a complex system is a major challenge in today’s highly dynamic 

environment. In addition, managing the lifecycle processes and schedule risks of these complex systems adds to 
the challenge of achieving program objectives. Complexity is ever present in today’s military system of systems 
architectures, acquisition lifecycle management processes, and supporting organizational structures. This 
complexity is often an impediment to the successful development, integration, and transition of capability gap-
closing technologies to support our Warfighters’ needs. Over the years, methods to reduce system complexity 
have taken many forms. The Design Structure Matrix (DSM) is one methodology that has proven very effective in 
the analysis, management, and integration of complex system architectures, organizational structures, and 
densely networked processes. DSM enables the user to model, visualize, and analyze the dependencies among 
the entities of any system—and derive suggestions for system optimization. 
 

 
INTRODUCTION 

The intent of this paper is to introduce Design Structure 
Matrix (DSM), a simple and insightful yet powerful Systems 
Engineering and Integration (SE&I) methodology for 
managing and developing complex systems. DSM is a 
matrix-based system modeling methodology that may be 
applied to the three critical domains in design and 
development of systems: product (Product Breakdown 
Structure), process (Work Breakdown Structure), and 
organization (Organizational Breakdown Structure). 
Delivering successful complex systems design and 
management through the use of DSM requires a deep 
understanding of system element interactions. DSM can 
assist by providing a compact and clear representation of a 
complex system and a capture method for the interactions, 
interdependencies, and interfaces between system elements. 

This paper will address several applications of DSM to 
optimize system structures (architectures) in the domains 
mentioned above. It will also specifically address task-based 
DSMs (Process Architecture), component-based DSMs 
(System Architecture), and team-based DSMs 
(Organizational Architecture).  

 
 

BACKGROUND 
The use of matrices in system modeling can be traced back 

to the 1960s and ’70s with Donald Stewart and John 
Warfield. However, it wasn’t until the 1990s that the method 
received widespread attention. Much of the credit in its 
current popularity is accredited to MIT’s research in the 
design process modeling arena by Dr. Steven Eppinger.  

DSM—also known as the dependency structure matrix, 
dependency source matrix, and dependency structure 
method—is a square matrix that shows relationships 
between elements within a system. Since the behavior and 
value of many systems is largely determined by interactions 
between its elements, DSMs have become increasingly 
useful and important in recent years. 

The DSM is related to other square-matrix–based methods, 
such as: a dependency map, a precedence matrix, a 
contribution matrix, an adjacency matrix, a reachability 
matrix, and an N-square diagram, and also related to non-
matrix–based methods such as directed graphs, systems of 
equations, and architecture diagrams and other dependency 
models.  

Relative to other system modeling methods, DSM has two 
main advantages that differentiate it from the others: 
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• DSM provides a simple and concise way to 
represent a complex system. 

• DSM is capable of powerful analyses techniques—
which will be discussed in subsequent sections of 
this paper. 

 
UNDERSTANDING COMPLEXITY 

The key to understanding and managing complexity is 
through system decomposition. Figure 1 may represent the 
decomposition of a complex: 
– System into subsystems and components 
– Process into subprocesses and tasks 
– Organization into teams and individuals. 
 

 
 

Figure 1: Decomposition of a System 
 

The relationship or pattern of interactions between the 
decomposed elements defines the architecture: 
– System architecture 
– Process architecture 
– Organization architecture. 
 

 
 

Figure 2: Decomposed Simple Architecture 
 

Note the simple architecture in Figure 2 compared to the 
complex architecture in Figure 3. This is evident by the lack 
of pattern in the interactions between the lowest level 
elements of the system. 

 
 

Figure 3: Decomposed Complex Architecture 
 

DESIGN STRUCTURE MATRIX 
There are two major types of DSMs: static (relationships 

between the system elements are not time-based) and 
temporal (relationships between the system elements are 
time-based). [2] For that reason, they are analyzed 
differently. Static DSMs are analyzed by clustering elements 
of the matrix, and temporal DSMs are analyzed by 
sequencing elements of the matrix. 

 
The general DSM modeling approach consists of the 

following steps: 
1) Define the system boundary 
2) Describe important interfaces 
3) Decompose the system into simpler elements 
4) Define the characteristics of the elements 
5) Characterize the element interactions 
6) Analyze the system architecture (structure): 

a) System model behaviors 
b) Potential element arrangements/integrations. 

 
In the next section, we will go into greater detail regarding 

the use of DSM for managing complex projects (task-based 
DSM). 

 
Process Domain: Task-Based DSM 
Before we introduce the use of the DSM method of 

analysis for program management tasks, we will briefly 
discuss the three possible types of task sequences.  

Consider a system (or project) consisting of two elements 
(or tasks): Task A and Task B. As illustrated in Figure 4, 
there are three basic sequences for describing the 
relationship between the tasks: sequential (or dependent 
tasks), parallel (or independent tasks), or coupled (or 
interdependent tasks). 
 

Three Possible Sequences for Two Tasks

Sequence Type Parallel Sequential Coupled

Graphic

Representation

Relationship Independent Dependent Interdependent  
 

Figure 4: Task Sequences and their Relationships 
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The matrix representation of the task sequences in Figure 4 
is shown in Figure 5. The matrix layout is as follows: The 
system elements are placed down the side of the matrix as 
row names and across the top as column headings in the 
same order. If there is an interaction, it is marked with an X, 
and if there is no interaction, it is left empty. In a matrix 
representation of a system, the diagonal of the matrix does 
not assist in describing the system. 

 

 
 

Figure 5: DSM Representation of Task Sequences 
 
As shown in Figure 5, because there are no interactions in 

the first matrix, they are independent of each other; thus, the 
tasks can be done in parallel (or concurrently). In the second 
matrix, Task B is dependent on information from Task A; 
therefore, the task sequence should be to complete Task A 
prior to Task B. Lastly, in the third matrix, Task B depends 
on Task A. However, Task A also depends on information 
provided by Task B, which makes them interdependent 
(coupled), which typically results in iteration. 

Product or system development is fundamentally iterative, 
yet iterations are hidden. Iteration is the repetition of tasks 
due to the availability of new information. For example: 

– Changes in input information (upstream) 
– Update of shared assumptions (concurrent) 
– Discovery of errors (downstream). 
 
Engineering activities are repeated to improve product 

quality and/or to reduce cost. To understand and accelerate 
iterations requires: 

– Visibility of iterative information flows 
– Understanding of the inherent process coupling. 

 
A task-based DSM can also be considered an information 

exchange model. Figure 6 is an example of a task-based 
DSM; this can represent any project plan in the order of its 
development sequence  

 
DSM Used for Managing Complex Projects 
The DSM is constructed in the following manner: 

Each task or process step (in our example, letters) is listed in 
the order of its development sequence along the side and top. 
The X’s in the matrix represent an information exchange (or 
interaction) between the tasks, or process steps. 

The DSM is read in the following manner: (1) Focus on 
the vertical blue line aligned with Task B, and follow the 
arrow to see that Task B transfers information to Tasks C, F, 

G, J, and K; (2) Focus on the red horizontal line with Task 
D; Task D requires information from Tasks E, F, and L. 
Note that information flows are easier to capture than work 
flows and that inputs (blue lines) are easier to capture than 
outputs (red lines). 

 

Interpretation:

•Task B transfers information to tasks C, F, G, J, and K

•Task D requires information from tasks E, F, and L
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Figure 6: Task-Based DSM (Original Sequence) 
 
Figure 7 shows the direction of information flows provided 

initially in Figure 6 with the upper and lower diagonal 
sections of the matrix. Information exchange in the upper 
half of the matrix represents feedback of information that 
cause process iteration and are sometimes undesirable but 
sometimes necessary for system optimization. Information 
exchange in the lower diagonal is desirable, meaning that it 
should not cause iteration.  

Note that each X above the diagonal represents a potential 
area of iteration and rework resulting in workforce 
inefficiency. The key is to reorder the tasks such that the 
number of X’s above the diagonal is minimized for risk 
mitigation. 

Note that this convention in some literature shows 
feedbacks below the triangular and feed-forward of 
information flows above the diagonal. This is just using the 
transpose of the matrix. As long a consistent approach is 
used, the two conventions convey the equivalent 
information.  
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Interpretation:

� Interactions above the diagonal feeds information back to 

previous tasks; potential for iteration / rework

� Interactions below the diagonal feeds information forward
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Figure 7: Information Flows 
 
The visualization and analysis depicted in Figures 6 and 7 

of the product lifecycle provides insight into the program or 
system complexity. 

 
Analysis Technique for Process DSMs  
Partitioning is the re-sequencing or reordering of the DSM 

rows and columns such that the new DSM arrangement does 
not contain any feedback marks in the upper diagonal, thus 
transforming the DSM into a lower triangular form. For 
complex engineering systems, it is highly unlikely that 
simple row and column manipulation will result in a lower 
triangular form. Therefore, the analyst’s objective changes 
from eliminating the feedback marks to moving them as 
close as possible to the diagonal (this form of the matrix is 
known as block triangular).  

In Figure 8, the development sequence provided in Figures 
6 and 7 was partitioned (or re-sequenced) to minimize the 
marks in the upper triangle of the matrix. After 
partitioning—the new development sequence shows an 
improved order of process steps—also shown are the three 
different types of process steps previously discussed: 

– Sequential tasks (in green) shows Task B must be 
completed before Task C as information on Task B is 
required to do Task C. 

– Parallel tasks (in blue) have no interaction with each 
other and can be executed at the same time (e.g., Tasks A 
and K can be done simultaneously after Task C). 

– Coupled (in brown) tasks can be identified uniquely, 
highlighting iteration and potential rework. 
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Figure 8: Partitioned DSM and Sequence Type 

 
Note the large iterative process (or coupled tasks) in the 

middle of the matrix in Figures 8 and 9. This iterative 
process can be further reduced to achieve a better process 
architecture by a method called tearing (see Figure 9). 
Tearing marks in the DSM can break coupled blocks into 
smaller ones or make them sequential. 

Torn marks may become assumptions or controls for the 
process. Torn marks are usually justified by good 
assumptions that reduce risk of unwanted iteration. This 
requires a full understanding of relationships of the 
interfacing elements. Adding controls in the process is 
another method to allow tearing of marks. 
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Figure 9: Partitioned DSM with Proposed Tearing 
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Once a mark is torn, the large coupling that existed in 
Figures 8 and 9 can be represented by two smaller couplings 
to allow a quicker overall process, as depicted in Figure 10. 
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Figure 10: DSM with Tearing Effects 
 
Process Architecture DSM Approach: 
1. Select a process or sub-process to model. 
2. Identify the tasks of the process, identify who is 

responsible, and determine the outputs created. 
3. Lay out the square matrix with the tasks in the order 

they are nominally executed. 
4. Ask the process experts what inputs are normally used 

for each task. Insert marks representing the 
information inputs to each task. 

5. Identify the exceptional (unplanned) process flows 
and the ways that the process can fail. Include marks 
representing these unplanned iterations. 

6. Analyze the DSM model to re-sequence tasks, 
suggesting a new process by forcing marks below the 
matrix diagonal. 

7. Draw solid boxes around the coupled tasks 
representing the task couplings (iterations). 

8. Draw dashed boxes around groups of parallel 
(uncoupled) tasks—opportunities for leaning out 
process. 

9. Highlight the unplanned iterations: risks 
10. Further analyze by deep-diving the risks to determine 

ways to minimize schedule risks. 
 
In summary, the benefits of applying a Process DSM are as 

follows: 
– Visualizing processes or information flows 
– Interface management representation 

– A means of highlighting iteration and rework 
– Enables “leaning” out processes 
– Analyzing process cost, schedule, and risks 
– A framework for knowledge management. 

 
The next section goes in greater detail regarding the 

application of static DSMs for both product/system 
architecture (component-based DSM) and organization 
(team/people-based DSM) and the analysis technique 
typically used for managing system complexity.  

 
Product Domain: System Architecture DSM 
A definition of System Architecture is “The fundamental 

organization of a system embodied in its components, their 
relationships to each other and to the environment, and the 
principles guiding its design and evolution.” Another 
definition is, “The arrangement of functional elements into 
physical modules which become the building blocks for the 
product of family of products.” [IEEE Std 1471-2000] The 
modules employ one of more functions. The interaction 
between modules should be well understood and defined. A 
modular architecture provides value in its simplicity and 
reusability for a platform. System integration needs are 
determined by the chosen decomposition and its resulting 
architecture. We map the structure of interactions in order to 
plan for integration. 

The system architecture DSM example employs an 
automobile’s climate control system, as shown in Figure 11. 

 
System Architecture DSM Approach: 
1. Decompose the system architecture into its components. 
2. Document the interactions between the components 

using a DSM. 
3. Cluster (integrate) the components into “chunks” or 

subsystem modules. 
 

Clustering is another technique for manipulating a DSM. 
As seen with partitioning (i.e., re-sequencing) in the task-
based DSM, the goal of partitioning was to render the DSM 
lower triangular as much as possible. The reason was due to 
the significance of upper-diagonal marks, which represented 
feedback information flows. This situation arises whenever 
the matrix elements represent a set of time-based elements. 
On the other hand, when the DSM elements represent design 
components (i.e., a component-based DSM), the goal of the 
matrix manipulation changes significantly from that of 
partitioning algorithms. The new goal becomes finding 
subsets of DSM elements (i.e., clusters or modules) that are 
mutually exclusive or minimally interacting subsets (i.e., 
clusters as groups of elements that are interconnected among 
themselves to an important extent while being little 
connected to the rest of the system). This process is referred 
to as clustering.  
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In other words, clusters absorb most, if not all, of the 
interactions internally, and the interactions or links between 
separate clusters are eliminated or at least minimized.  

 
 

 
 

Figure 11: Automotive Climate Control System 
Component Schematic 

 
Step 2 requires documentation of all component interactions, 
beginning with a binary DSM. 
 

A B C D E F G H I J K L M N O P

Radiator A A X X

Engine Fan B X B X X

Heater Core C C X X X X

Heater Hoses D X D X

Condenser E X X E X X

Compressor F X F X X X X X

Evaporator Case G X G X X X X

Evaporator Core H X X X X H X X

Accumulator I X X X I X

Refrigeration Controls J X X J X X

Air Controls K X X K X X X X

Sensors L X L X

Command Distribution M X X X X X M X X X

Actuators N X X X N

Blower Controller O X X X O X

Blower Motor P X X X X X P  
 

Figure 12: Preliminary Binary DSM 
 

The next step is to classify and quantify the interactions 
based on type of interaction (i.e., Spatial, Energy, 
Information, Material) and quantification of each type of 
interaction (i.e., it could be a scale of -2 {detrimental to 
system functionality} to 0 {does not affect functionality} up 
to +2 {required for functionality}). 

Analysis of the system architecture identifies functional 
modules and distributed subsystems. This knowledge can 
support the formation of your IPTs and plans for system 
integration. Figure 13 shows the final clustered DSM for our 
example. When clustering, one objective should be to 
maximize internal interactions while minimizing external 
interactions for each module. Another objective when 
clustering is to consider the size of your subsystem module, 
such that the modular chunk adds system value. 

 
 

Figure 13: Clustered Interactions Matrix for 
Automotive Climate Control Example 

 
In summary, the following are insights gained from the 

application of a System (Product) Architecture DSM: 
1) DSM is an effective representation for system 

components and their relationships. 
2) DSM can be analyzed by clustering (integration 

analysis). 
3) Integration analysis: 

a) Can generate alternative views on system  
architecture.  

b) Help improve architectural understanding. 
c) Facilitates architectural innovation. 

4) Architecture DSMs also support the following 
applications: interface management, functional 
integration, portfolio segmentation, knowledge 
capture. 

 
The next section goes in greater detail regarding the 

application to organizations (team/people-based DSM) and 
the analysis technique typically used for managing system 
complexity. 

 
Organization Domain: Organization DSM 

Organizations are complex systems. An improved 
understanding of these complex organizational architectures 
enables their ability to innovate and continuously improve. 
Organizational decomposition requires an understanding of 
the elements and their relationships (interfaces). 
Relationships among the elements are what give 
organizations their added value. The greatest leverage in 
organizational architecting is at the interfaces. Many barriers 
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in system development programs are a result of interfacing 
problems or the organizations inability to integrate team 
structures, which leads to either lack of communication or 
information overload. Another problem complex 
organizations face is how to design a project or program 
organization in a way that facilitates and motivates the 
timely flow of appropriate information and regulates 
information overload. 
 
Organization Architecture DSM Approach: 
1. Decompose the organization into elements or teams 

with specific functions, roles, or assignments (it is often 
helpful to map teams to product subsystems, 
components, etc.). 

2. Document the interactions between the elements (teams 
or people) using a DSM. 

3. Cluster (integrate) the elements into higher-level 
elements (organizational modules). 

 
Example: Automobile Engine Design Organization [7] 
This next example will show how DSM can be used to 
develop organizational team structures for improved 
communications and systems integration. 
 
This example was an engine development program by GM. 
Figure 14 shows the original organization breakdown 
structure for this program. 
 

New Engine System 
Program

Short Block 
Subsystem Team 

Valve Train 
Subsystem Team

Induction 
Subsystem Team

Emissions & 
Electrical 

Subsystem Team

Engine Assembly

Engine Block
Crankshaft
Flywheel
Pistons

Connecting Rods
Lubrication

Cylinder Heads
Camshaft/Valve Train
Water Pump/Cooling

Intake Manifold
Fuel System

Accessory Drive
Air Cleaner

AIR
Throttle Body

Exhaust
EGR
EVAP

Ignition
ECM

Electrical System

System/Program

Subsystem Teams

PDTs

 
 

Figure 14: Organization Breakdown Structure 
 

The matrix in Figure 15 shows the original organizational 
structure and the frequency of interactions of the engine 
subsystem teams and product development teams (PDT) 
structures. The subsystem teams are as follows: short block 
(in red), valve train (in green), induction (in brown), and 
emissions/electrical (in blue). 

Note the legend below the matrix, which describes the 
frequency of interactions between the system elements; the 
largest dot depicts daily interactions, the medium size dot 
depicts weekly interactions, and the smallest dot represents 
monthly interactions. Also note the number of interactions 
outside of the team structure and lack of a formal 
mechanism to ensure communication and integration of the 
system formally within the current team structures. 

Original Organizational Architecture

• • • • • •
Air Cleaner N • • • • N • • •

A.I.R. O • • • • • • O • • • • • •
Throttle Body Q • • • • • • • Q • • • • •

Exhaust L • • • • • • • • • L • • • • •
E.G.R. M • • • • • • • • • M • • • •
EVAP R • • • R • •

Ignition

A F G D E I B C J K P H N O Q L M R S T U V
Engine Block A A • • • • • • • • • • • • • • •

Crankshaft F • F • • • • • • • • • • •
Flywheel G • • G • • •

Pistons D • • • D • • • • • • • • •
Connecting Rods E • • • E • • • •

Lubrication I • • • • • I • • • • • • • •
Cylinder Heads B • • • • B • • • • • • • • • • • •

Camshaft/Valve Train C • • • • • C • • • • •
Water Pump/Cooling J • • • • • J • • • • • • • •

Intake Manifold K • • • • • K • • • • • • • • • • •
Fuel System P • • • P • • • • • • • •

Accessory Drive H • • • • • • • • H • • • •

S • • • • • • • • • • • • • • S • • •
E.C.M. T • • • • • • • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • U •
Engine Assembly V • • • • • • • • • • • • • • • • • • • • V

Frequency of Team Interactions

• High (Daily) • Average (Weekly) • Low (Monthly)  
 

Figure 15: Original Organizational Structure 
 

Proposed Organizational Architecture
F G E D I A C B K J P N Q R B K O L M H S T U V

Crankshaft F F • • • • • • • • • • • •

Flywheel G • G • • • •

Connecting Rods E • E • • • • • •

Pistons D • • • D • • • • • • • • •
Lubrication I • • • • I • • • • • • • • •

Engine Block A • • • • • A • • • • • • • • • •

Camshaft/Valve Train C • • • • C • • • • • •

Cylinder Heads B1 • • • • • B1 • • • • • •
Intake Manifold K1 • • • • K1 • • • • •

Water Pump/Cooling J • • • • • • J • • • • • • • • •

Fuel System P • P • • • • • • • • • •

Air Cleaner N • N • • • • • •
Throttle Body Q • • • Q • • • • • • • • •

EVAP R • • R • • •

Cylinder Heads B2 • • • B2 • • • • • • • •
Intake Manifold K2 • • • • • • K2 • • • • • • •

A.I.R. O • • • • • • O • • • • • •

Exhaust L • • • • • • • • L • • • • • •

E.G.R. M • • • • • • • • M • • • • •

Accessory Drive H • • • • • • • • • • • • • • • • H • • • •

Ignition S • • • • • • • • • • • • • • • • S • • •
E.C.M. T • • • • • • • • • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • • • U •
Engine Assembly V • • • • • • • • • • • • • • • • • • • • • • V

Team 1

Team 2

Team 3

Team 4

Integration 
Team

F G E D I A C B K J P N Q R B K O L M H S T U V
Crankshaft F F • • • • • • • • • • • •

Flywheel G • G • • • •

Connecting Rods E • E • • • • • •

Pistons D • • • D • • • • • • • • •
Lubrication I • • • • I • • • • • • • • •

Engine Block A • • • • • A • • • • • • • • • •

Camshaft/Valve Train C • • • • C • • • • • •

Cylinder Heads B1 • • • • • B1 • • • • • •
Intake Manifold K1 • • • • K1 • • • • •

Water Pump/Cooling J • • • • • • J • • • • • • • • •

Fuel System P • P • • • • • • • • • •

Air Cleaner N • N • • • • • •
Throttle Body Q • • • Q • • • • • • •

Team 4

Team 1

Frequency of Team Interactions

• High (Daily) • Average (Weekly) • Low (Monthly)  
 

Figure 16: Proposed Organization After Clustering 
 

The matrix in Figure 16 shows the elements rearranged (or 
“clustered”) to minimize interactions outside of the proposed 
structures. Note that the number of interactions required 
outside of the team structures has been significantly reduced. 
Also note the overlapping of teams—requiring that certain 
team members support multiple teams—and the formation of 
an integration team. 

This proposed organization significantly improved its 
communication and efficiency and its ability to integrate the 
engine system with the creation of the integration team. 
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SUMMARY AND FINAL REMARKS 
The DSM methodology supports a major need in 

engineering design and management of complex systems. 
The method provides a visually powerful means for 
capturing, communicating, and organizing engineering 
design activities and architectural issues such as project team 
structures and system architecture. 

This paper provides an introduction to the DSM method as 
an alternative approach to classical project management 
techniques for managing complex systems development. The 
method is useful by simply building and inspecting the 
DSM, and even without further analysis, building a DSM 
model of a project/system improves visibility and 
understanding of project/system complexity. With the use of 
a DSM model, one can more easily convey the process to 
others in a single picture (matrix). 

This paper introduced the power of DSM by presenting the 
application in the three key domains in system design, 
development, and management. DSMs have been applied in 
numerous industries including automotive design, aerospace 
design processes, building construction, microprocessor 
development, telecom, electronics, and some military 
applications (e.g., U.S. Air Force and U.S. Navy). 
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